最近基于深度学习的医学图像注册方法实现了与传统优化算法在减少的运行时间时具有竞争力的结果。但是,深度神经网络通常需要大量标记的培训数据,并且容易受到培训和测试数据之间的领域变化。尽管基于按键的注册可以减轻典型的强度移位,但由于不同的视野,这些方法仍然遭受几何域移位。作为一种补救措施,在这项工作中,我们提出了一种用于图像注册的几何结构域适应性的新方法,将模型从标记的源调整为未标记的目标域。我们以基于按键的注册模型为基础,将用于几何特征学习的图形卷积与循环信念优化相结合,并提议通过自我增压来减少域的转移。为此,我们将模型嵌入了卑鄙的教师范式中。我们将平均教师扩展到这种情况下,通过1)调整随机增强方案和2)将学习的特征提取与可区分优化相结合。这使我们能够通过对学习学生和时间平均的教师模型的一致预测来指导未标记的目标域中的学习过程。我们评估了在两个具有挑战性的适应方案(dir-lab 4d ct to copd,copd to copd to Learn2Reg)下呼气到肺CT注册的方法。我们的方法一致地将基线模型提高了50%/47%,甚至匹配了对目标数据训练的模型的准确性。源代码可在https://github.com/multimodallearning/registration-da-mean-teacher上获得。
translated by 谷歌翻译
域适应(DA)最近在医学影像社区提出了强烈的兴趣。虽然已经提出了大量DA技术进行了用于图像分割,但大多数这些技术已经在私有数据集或小公共可用数据集上验证。此外,这些数据集主要解决了单级问题。为了解决这些限制,与第24届医学图像计算和计算机辅助干预(Miccai 2021)结合第24届国际会议组织交叉模态域适应(Crossmoda)挑战。 Crossmoda是无监督跨型号DA的第一个大型和多级基准。挑战的目标是分割参与前庭施瓦新瘤(VS)的后续和治疗规划的两个关键脑结构:VS和Cochleas。目前,使用对比度增强的T1(CET1)MRI进行VS患者的诊断和监测。然而,使用诸如高分辨率T2(HRT2)MRI的非对比度序列越来越感兴趣。因此,我们创建了一个无人监督的跨模型分段基准。训练集提供注释CET1(n = 105)和未配对的非注释的HRT2(n = 105)。目的是在测试集中提供的HRT2上自动对HRT2进行单侧VS和双侧耳蜗分割(n = 137)。共有16支球队提交了评估阶段的算法。顶级履行团队达成的表现水平非常高(最佳中位数骰子 - vs:88.4%; Cochleas:85.7%)并接近完全监督(中位数骰子 - vs:92.5%;耳蜗:87.7%)。所有顶级执行方法都使用图像到图像转换方法将源域图像转换为伪目标域图像。然后使用这些生成的图像和为源图像提供的手动注释进行培训分割网络。
translated by 谷歌翻译
迄今为止,迄今为止,众所周知,对广泛的互补临床相关任务进行了全面比较了医学图像登记方法。这限制了采用研究进展,以防止竞争方法的公平基准。在过去五年内已经探讨了许多新的学习方法,但优化,建筑或度量战略的问题非常适合仍然是开放的。 Learn2reg涵盖了广泛的解剖学:脑,腹部和胸部,方式:超声波,CT,MRI,群体:患者内部和患者内部和监督水平。我们为3D注册的培训和验证建立了较低的入境障碍,这帮助我们从20多个独特的团队中汇编了65多个单独的方法提交的结果。我们的互补度量集,包括稳健性,准确性,合理性和速度,使得能够独特地位了解当前的医学图像登记现状。进一步分析监督问题的转移性,偏见和重要性,主要是基于深度学习的方法的优越性,并将新的研究方向开放到利用GPU加速的常规优化的混合方法。
translated by 谷歌翻译
目前可变形的医学图像登记的方法通常难以满足以下所有标准:多功能适用性,小的计算或培训时间,以及能够估计大变形。此外,用于监督登记培训的端到端网络通常变得过于复杂,难以训练。对于Learn2Reg2021挑战,我们的目标是通过解耦特征学习和几何对齐来解决这些问题。首先,我们介绍了一种新的非常快速准确的优化方法。通过采用离散的位移和耦合的凸优化程序,我们能够强大地应对大变形。借助基于亚当的实例优化,我们实现了非常准确的注册性能,并通过使用正则化,我们获得了光滑和合理的变形字段。其次,对于不同的注册任务来说是多功能的,我们提取手工制作的功能,这些功能是模态和对比度不变,并将它们与来自特定于任务的分段U-Net的语义特征补充。通过我们的结果,我们能够实现整体学习2REG2021挑战的第二名,赢得任务1,并在另外两项任务中赢得任务1。
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
常规进行了视频支气管镜检查,以涉嫌癌症,监测COPD患者的肺组织活检以及在重症监护病房中澄清急性呼吸问题。复杂的支气管树中的导航尤其具有挑战性和身体要求,需要医生的长期经验。本文介绍了支气管镜视频中支气管孔的自动分割。由于缺乏易于获取的地面真相分段数据,目前,基于学习的深度方法被阻碍。因此,我们提出了一个由K均值组成的数据驱动管道,然后是基于紧凑的标记的流域算法,该算法能够从给定的深度图像中生成气道实例分割图。通过这种方式,这些传统算法是仅基于Phantom数据集的RGB图像上直接在RGB图像上训练浅CNN的弱监督。我们在两个体内数据集上评估了该模型的概括能力,这些数据集涵盖21个不同的支气管镜上的250帧。我们证明其性能与那些在体内数据中直接训练的模型相当,通过128x128的图像分辨率,对于检测到的气道分割中心的平均误差为11 vs 5像素。我们的定量和定性结果表明,在视频支气管镜检查,幻影数据和弱监督的背景下,使用基于非学习的方法可以获得对气道结构的语义理解。
translated by 谷歌翻译
为了能够在不怀疑的情况下使用人工智能(AI)在医学中,并认识到和评估其日益增长的潜力,在当前和未来的医务人员中,对该主题的基本理解是必要的。在“通过理解的信任”的前提下,我们在德国Ki校园(AI校园)项目框架内开发了创新的在线课程,这是一个自我指导的课程,它教授AI的基础知识进行分析医疗图像数据。主要目标是提供一个学习环境,以充分了解医学图像分析中的AI,以便通过积极的应用经验来克服对该主题的进一步兴趣,并可以克服对其使用的抑制。重点是医疗应用和机器学习的基础。在线课程分为连续的课程,其中包括以解释性视频的形式,以简化和实践练习和/或测验的形式进行的实践练习,以检查学习进度。在课程的第一次跑步中,参与医学生的一项调查用于定量分析我们的研究假设。
translated by 谷歌翻译
我们描述了作为黑暗机器倡议和LES Houches 2019年物理学研讨会进行的数据挑战的结果。挑战的目标是使用无监督机器学习算法检测LHC新物理学的信号。首先,我们提出了如何实现异常分数以在LHC搜索中定义独立于模型的信号区域。我们定义并描述了一个大型基准数据集,由> 10亿美元的Muton-Proton碰撞,其中包含> 10亿美元的模拟LHC事件组成。然后,我们在数据挑战的背景下审查了各种异常检测和密度估计算法,我们在一组现实分析环境中测量了它们的性能。我们绘制了一些有用的结论,可以帮助开发无监督的新物理搜索在LHC的第三次运行期间,并为我们的基准数据集提供用于HTTPS://www.phenomldata.org的未来研究。重现分析的代码在https://github.com/bostdiek/darkmachines-unsupervisedChallenge提供。
translated by 谷歌翻译
Accurate determination of a small molecule candidate (ligand) binding pose in its target protein pocket is important for computer-aided drug discovery. Typical rigid-body docking methods ignore the pocket flexibility of protein, while the more accurate pose generation using molecular dynamics is hindered by slow protein dynamics. We develop a tiered tensor transform (3T) algorithm to rapidly generate diverse protein-ligand complex conformations for both pose and affinity estimation in drug screening, requiring neither machine learning training nor lengthy dynamics computation, while maintaining both coarse-grain-like coordinated protein dynamics and atomistic-level details of the complex pocket. The 3T conformation structures we generate are closer to experimental co-crystal structures than those generated by docking software, and more importantly achieve significantly higher accuracy in active ligand classification than traditional ensemble docking using hundreds of experimental protein conformations. 3T structure transformation is decoupled from the system physics, making future usage in other computational scientific domains possible.
translated by 谷歌翻译
Variational autoencoders model high-dimensional data by positing low-dimensional latent variables that are mapped through a flexible distribution parametrized by a neural network. Unfortunately, variational autoencoders often suffer from posterior collapse: the posterior of the latent variables is equal to its prior, rendering the variational autoencoder useless as a means to produce meaningful representations. Existing approaches to posterior collapse often attribute it to the use of neural networks or optimization issues due to variational approximation. In this paper, we consider posterior collapse as a problem of latent variable non-identifiability. We prove that the posterior collapses if and only if the latent variables are non-identifiable in the generative model. This fact implies that posterior collapse is not a phenomenon specific to the use of flexible distributions or approximate inference. Rather, it can occur in classical probabilistic models even with exact inference, which we also demonstrate. Based on these results, we propose a class of latent-identifiable variational autoencoders, deep generative models which enforce identifiability without sacrificing flexibility. This model class resolves the problem of latent variable non-identifiability by leveraging bijective Brenier maps and parameterizing them with input convex neural networks, without special variational inference objectives or optimization tricks. Across synthetic and real datasets, latent-identifiable variational autoencoders outperform existing methods in mitigating posterior collapse and providing meaningful representations of the data.
translated by 谷歌翻译